
Binghamton

University

CS-220

Spring 2016

Virtual Memory
Virtual Memory POV

Computer Systems Chapter 9.1 - 9.6

Binghamton

University

CS-220

Spring 2016

Caveat

All of what I’m teaching is ONE way virtual memory is managed.

I have “simplified” some of the processing to make things clear.

The actual implementation is more complicated.

Binghamton

University

CS-220

Spring 2016

Swapping Memory
Bad Idea:

Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

• A 32 bit address space is 4G

• Writing 4G to disk takes ~1G/sec or 4 seconds

• Times slices are MUCH smaller than 1 second

• You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton

University

CS-220

Spring 2016

Page Swap In

slot n

..
…

slot 2

slot 1

slot 0

Copy a page from
address space into real

memory

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

page 0000 3

Page Slot

0000 3 2

Binghamton

University

CS-220

Spring 2016

Multi-Process Page Table

slot n

..
…

slot 2

slot 1

slot 0

• Keep PID in page table
• When process is

active, its pages get
high activity and stay
in core

• When process is
swapped out, its
pages get stale and
are more likely to get
swapped out

PID 6874 PID 8133

page FFFF F

…

page 0000 3

page 0000 2

page 0000 1

page 0000 0

PID Page Slot

6874 0000 3 2

8133 801C C 1

8133 FFE1 A 5

Binghamton

University

CS-220

Spring 2016

Abstract Swap Space

• We think of SWAP space as an entire address space on disk

page FFFF F

…

page 0000 4

page 0000 3

page 0000 2

page 0000 1

page 0000 0

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction: Swap Space Details

• Swap space is divided into 4K pages

• And a swap space table….
• Free – whether this page space

is free or currently being used

• PID – Keeps track of which PID
(or PIDs) currently “own” this page

• Virtual Page – Identifies where this page belongs in the
virtual address space

• Disk Addr – location of page on disk

Free PID(s)
Virt.
Page

Disk
Addr

0 8133 801C B

0 8133 801C C

0 8133 FFE1 A

1 ---- ------

Binghamton

University

CS-220

Spring 2016

Mutli-Process Memory Request
• PID 8133 requests memory at 0xFFE1A03A

• PID 8133 Page FFE1A is not in the page table

• PAGE FAULT (PID 8133 becomes idle)

Free PID(s)
Virt.
Page

Disk
Addr

0 8133 801C B

0 8133 801C C

0 8133 FFE1 A

1 ---- -----

slot n

..
…

slot 2

slot 1

slot 0

PID Page Slot Dirty

6874 0000 3 4 1

8133 801C C 1 0

8133 801C B 2 1

Binghamton

University

CS-220

Spring 2016

Before Page Fault

Swap Space Table

Free PID(s) Page ID Disk@

0 6874 0000 3 0000

0 6874 0000 4 4096

0 8133 801C B 8192

0 8133 801C C 12,288

1 ---- ---- - 16,384

0 8133 FFE1 A 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 801C B 2 1 ->-1

8133 801C D 3 0 ->1

6874 0000 3 4 1 ->2

6874 0801 3 5 0 H->3

,,,

PID 8133 requests memory at 0xFFE1A03A

Binghamton

University

CS-220

Spring 2016

Swap Out
• Pick a victim

• If dirty bit is on, find a free virtual page

• Copy page from real memory to disk

Free PID(s)
Virt.
Page

Disk
Addr

0 8133 801C B

0 8133 801C C

0 8133 FFE1 A

1 ---- -----

slot n

..
…

slot 2

slot 1

slot 0

PID Page Slot Dirty

6874 0000 3 4 1

8133 801C C 1 0

8133 801C B 2 1

Binghamton

University

CS-220

Spring 2016

…Swap Out
• Update New Row of Swap Space Table

• Free old Row of Swap Space Table

• Remove Page Table Entry

Free PID(s)
Virt.
Page

Disk
Addr

0 8133 801C C

0 8133 FFE1 A

slot n

..
…

slot 2

slot 1

slot 0

PID Page Slot Dirty

6874 0000 3 4 1

8133 801C C 1 0

8133 801C B 2 1

1 ---- -----0 8133 801C B

801C B81330 ----------1

Binghamton

University

CS-220

Spring 2016

Swap In (to real memory slot)
• Find PID/virtual page in SWAP space table

• Copy page from disk address to real memory

• Update page table

Free PID(s)
Virt.
Page

Disk
Addr

1 ---- ------

0 8133 801C C

0 8133 FFE1 A

0 8133 801C B

slot n

..
…

slot 2

slot 1

slot 0

PID Page Slot Dirty

6874 0000 3 4 1

8133 801C C 1 0

8133 FFE1 A 2 0

Binghamton

University

CS-220

Spring 2016

After Page Fault

Swap Space Table

Free PID(s) Page ID Disk@

0 6874 0000 3 0000

0 6874 0000 4 4096

1 ---- ---- - 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

0 8133 FFE1 A 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 1 ->-1

6874 0801 3 5 0 ->3

,,,

PID 8133 requests memory at 0xFFE1A03A

Binghamton

University

CS-220

Spring 2016

Exit Revisited

• When a process exits, dirty bit is turned off for all pages in the
page table that belong to that process

• All pages in swap space table associated with this PID are marked
as “free”

• No other action is performed
• The processes pages will eventually get stale and swapped out

• Dirty bit will never get turned on again because the process is gone.

• When pages are swapped out, no attempt to write them back to swap
space because the dirty bit is off.

Binghamton

University

CS-220

Spring 2016

Before Exit

Swap Space Table

Free PID(s) Page ID Disk@

0 6874 0000 3 0000

0 6874 0000 4 4096

1 ---- ---- - 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

0 8133 FFE1 A 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 1 ->-1

6874 0801 3 5 0 ->3

,,,

PID 6874 about to exit

Binghamton

University

CS-220

Spring 2016

After Exit

Swap Space Table

Free PID(s) Page ID Disk@

1 ---- ---- - 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

0 8133 FFE1 A 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 0 ->-1

6874 0801 3 5 0 ->3

,,,

PID 6874 exited

Binghamton

University

CS-220

Spring 2016

fork revisited
• Add child PID to parent PID in swap space table entries for parent

• When child first accesses memory…
• Generates page fault… no child process pages in real memory yet.

• Page swapped in from parent child shared swap space to real memory

• Page table identifies real page as belonging to child

• When parent process dirty page is swapped out…
• New swap space is created for that page with only the parent PID

• Parent PID removed from parent/child shared swap page

• When child process dirty page is swapped out
• New swap space is created for that page with only the child PID

• Child PID removed from parent/child shared swap page

Binghamton

University

CS-220

Spring 2016

Multiple PIDs in Swap Space Table Row

• Most of the time, a page in the swap space table is only associated
with a single PID

• When a “fork” occurs, parent and child have exactly the same
memory… no need for two copies in swap space… just add child
PID to the parents page

• When a page with multiple PIDs is swapped in, it is swapped in by
one of those PIDs. In the page table, the page in real memory is
owned by a single PID

• If both child and parent access the same page, two pages are in
real memory, one for each process

Binghamton

University

CS-220

Spring 2016

Multiple PIDs in Swap Space Table Row

• When swap-out occurs, memory has changed for the PID that
owns the page in real memory

• The page is copied to a NEW swap space page, associated with a
single PID… the PID that owned the real page memory

• The PID is removed from the list of PIDs in the old swap space
table row for this page

• If, when you removed the PID, there are no PIDs left in the old
swap space table row for this page, mark this page as free

Binghamton

University

CS-220

Spring 2016

Implementation Detail

• For my description of “fork” to work, swap space must match real
memory

• Therefore, before adding child PIDs to the parent PID in swap
space table, need to copy every page in page table for parent
process with Dirty bit on back to swap space.

Binghamton

University

CS-220

Spring 2016

Before Fork

Swap Space Table

Free PID(s) Page ID Disk@

1 ---- ---- - 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

0 8133 FFE1 A 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 1 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 0 ->-1

6874 0801 3 5 0 ->3

,,,

PID 8133 about to fork

Binghamton

University

CS-220

Spring 2016

Before Fork

Swap Space Table

Free PID(s) Page ID Disk@

0 8133 FFE1 A 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 0 ->-1

6874 0801 3 5 0 ->3

,,,

PID 8133 forking… update swap space

Binghamton

University

CS-220

Spring 2016

Fork – Child PID=8134

Swap Space Table

Free PID(s) Page ID Disk@

0 8133,8134 FFE1 A 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->4

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 H->5

8133 801C D 3 0 ->1

6874 0000 3 4 0 ->-1

6874 0801 3 5 0 ->3

,,,

PID 8133 forking… add child pid in swap table

Binghamton

University

CS-220

Spring 2016

After Fork / after child page fault

Swap Space Table

Free PID(s) Page ID Disk@

0 8133,8134 FFE1 A 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

5934 0801 3 0 0 ->-1

8133 801C C 1 0 ->0

8133 FFE1 A 2 0 ->5

8133 801C D 3 0 ->1

8134 801C B 4 0 H->2

6874 0801 3 5 0 ->3

,,,

Child PID 8134 requests instruction after fork…

Binghamton

University

CS-220

Spring 2016

After Fork / before parent page swap out

Swap Space Table

Free PID(s) Page ID Disk@

0 8133,8134 FFE1 A 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

8134 801C C 0 0 H->5

8133 801C C 1 0 ->3

8133 FFE1 A 2 1 ->-1

8133 801C D 3 0 ->4

8134 801C B 4 0 ->2

8134 FFE1 A 5 1 ->1

,,,

PID 9432 requests instruction at 0x801C A010

Binghamton

University

CS-220

Spring 2016

After Fork / after parent page swap out

Swap Space Table

Free PID(s) Page ID Disk@

0 8134 FFE1 A 0000

0 8133 FFE1 A 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

8134 801C C 0 0 ->5

8133 801C C 1 0 ->3

9432 801C A 2 0 H->0

8133 801C D 3 0 ->4

8134 801C B 4 0 ->-1

8134 FFE1 A 5 1 ->1

,,,

PID 9432 requests instruction at 0x801C A010

Binghamton

University

CS-220

Spring 2016

After Fork / before child page swap out

Swap Space Table

Free PID(s) Page ID Disk@

0 8134 FFE1 A 0000

0 8133 FFE1 A 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

8134 801C C 0 0 ->4

8133 801C C 1 0 H->2

9432 801C A 2 0 ->0

8133 801C D 3 0 ->5

8134 801C B 4 0 ->3

8134 FFE1 A 5 1 ->-1

,,,

PID 9432 requests instruction at 0x801C B000

Binghamton

University

CS-220

Spring 2016

After Fork / after child page swap out

Swap Space Table

Free PID(s) Page ID Disk@

1 ---- ---- - 0000

0 8133 FFE1 A 4096

0 8134 FFE1 A 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

8134 801C C 0 0 ->4

8133 801C C 1 0 ->2

9432 801C A 2 0 ->0

8133 801C D 3 0 ->-1

8134 801C B 4 0 ->3

9432 801C B 5 0 H->1

,,,

PID 9432 requests instruction at 0x801C B000

Binghamton

University

CS-220

Spring 2016

execve / Load revisited

• Assuming execve is able to find the ELF executable…

• All old entries in the swap space table for this PID marked as free

• Each initialized section of the ELF file is copied to new SWAP
page(s) marked with this PID

• Every current entry in Page Table with this PID has PID changed to
zero and dirty bit turned off

• Dirty bit cannot be turned on again… no PID 0
• Pages will get stale and eventually swapped out

• When first memory fetch is performed, it causes a page fault
• Loads swap space into real memory and updates page table

Binghamton

University

CS-220

Spring 2016

Before child execve

Swap Space Table

Free PID(s) Page ID Disk@

0 8133,8134 FFE1 A 0000

1 ---- ---- - 4096

1 ---- ---- - 8192

0 8133,8134 801C C 12,288

0 8133,8134 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

8134 801C C 0 0 H->5

8133 801C C 1 0 ->3

8133 FFE1 A 2 1 ->-1

8133 801C D 3 0 ->4

8134 801C B 4 0 ->2

8134 FFE1 A 5 1 ->1

,,,

Child PID 8134 about to invoke execve

Binghamton

University

CS-220

Spring 2016

After child execve

Swap Space Table

Free PID(s) Page ID Disk@

0 8133 FFE1 A 0000

0 8134 801C A 4096

0 8134 801C B 8192

0 8133 801C C 12,288

0 8133 801C B 16,384

1 ---- ---- - 20,480

…

Page Table

PID PageID Slot Dirty PRU

0000 801C C 0 0 ->2

8133 801C C 1 0 ->3

8133 FFE1 A 2 1 ->-1

8133 801C D 3 0 ->4

0000 801C B 4 0 H->0

0000 FFE1 A 5 0 ->1

,,,

Child PID 8134 after execve

Binghamton

University

CS-220

Spring 2016

Uninitialized Pages

• No data in SWAP required for uninitialized pages of memory

• On first memory access in this page
• If page not found in swap space table, assume it is uninitialized

• MMU assigns swapped out page slot to new PID/page

• Saves disk read for uninitialized memory

• When page is swapped out, if dirty…
• New swap space page is created for this page (as before)

• If there is an old page in SWAP for this memory, it is marked as free

• If there is no old page in SWAP, it must have been uninitialized memory

Binghamton

University

CS-220

Spring 2016

Shared Memory

• Typically restricted to read-only memory

• Used for standard library functions

• Page Table Entry can be associated with multiple PIDs
• Multiple processes can share a single page in real memory!

• Saves time
• Shared pages have high hit rate because they are accessed by multiple

processes
• Shared pages often already in real memory

• Saves real memory
• if not shared, each process would have its own copy of that page

Binghamton

University

CS-220

Spring 2016

Shared Memory Problem

• Shared memory must use the same virtual pages for all processes

• Either we must come to global agreement on where “printf”
resides (which is REALLY hard) or…

• We must come up with an indirection methodology
• standard libraries are relocatable – not address specific

• The first process to call printf (since IPL) “loads” the shared library

• Somewhere, there is a table that says printf has been loaded at shared
virtual address 0x080C 0150 (for instance)

• When you call printf, you call a non-shared / non-relocatable printf which
looks up where printf really is (the first time) and re-directs there

Binghamton

University

CS-220

Spring 2016

Inter-Process Communication

• Sometime programmers use shared memory for inter-process
communication

• Shared page may be written to by multiple processes

• INHERENTLY DANGEROUS!

• Use “ipc” (inter-process communication) utilities instead
• contains semaphores and message passing protocols

Binghamton

University

CS-220

Spring 2016

Memory Mapping

ptr= mmap(NULL,length,PROT_READ,MAP_PRIVATE,fd,0);

• Logically… puts file contents of “fd” into memory and returns a
pointer to the start of the file contents

• In fact, divides the file into page sized chunks, and adds those
chunks to the swap space table!

• Allows writes as well as reads … dirty bit

• On “munmap”, swaps out all dirty pages

Binghamton

University

CS-220

Spring 2016

Memory Map
int fd=fopen(“test.txt”,RWONLY);

char *data=mmap(NULL,12288,PROT_WRITE,MAP_PRIVATE,fd,0);

// data=0x0F06 3000
Free PID(s)

Virt.
Page

Disk
Addr

0 8133 801C C

0 8133 FFE1 A

-1 8133 0F06 3

-1 8133 0F06 4

-1 8133 0F06 5

SWAP DISK

USER DISK

Binghamton

University

CS-220

Spring 2016

Virtual Memory is not Cache

• Cache uses some of the same concepts as virtual memory

• Cache is Fast/ Expensive RAM

slot n

…
..

slot 2

slot 1

slot 0

line n

.. …

line 2

line 1

line 0

CPU

L1 Cache

Binghamton

University

CS-220

Spring 2016

Backup (not presented)
Algorithms for Memory Management

Binghamton

University

CS-220

Spring 2016

Contents

• Page Table Definition

• Swap Space Table Definition
• realAddr

• findPageTable
• getSlot

• swapOut
• findSwap
• newSwap

• swapIn

• newRUhead

• exit

• fork
• flushProcess

• execve

Binghamton

University

CS-220

Spring 2016

Page Table Definition

• Columns
• PID – list of process IDs for this page
• Page – Page ID (first 5 hex chars of addr)
• Slot – Index of page slot
• Prot – Protection bits for this page… Read/Write/Execute
• Dirty – Whether this page differs from Swap space version
• PRU – Index of previous recently used page
• NRU – Index of next recently used page

• Initial Values
• PID=0, Page=0, Slot=0,1,2, up to number of slots in real memory

Prot=None, Dirty=0, PRU=-1, NRU = -1

• Also: RUhead=-1 RUtail=-1

PID Page Slot Prot Dirty PRU NRU

0 0 0 - 0 -1 -1

0 0 1 - 0 -1 -1

0 0 … - 0 -1 -1

Binghamton

University

CS-220

Spring 2016

Swap Space Table Definition

• Columns
• Free – 1 if available, ~1 otherwise

• PID – List of Processes associated with this page in swap

• Page – Page ID (first 5 hex chars of addr)

• Prot – Page protection: RWX

• Disk Addr – Location of page on Swap disk

• Initial values
• Free – 1, PID – Null, Prot – NULL, Page – 0

• Disk Addr – all swap page slots available in swap space

Free PID Page Prot
Disk
Addr

1 - 0 - 01000

1 - 0 - 02000

1 - 0 - …

Binghamton

University

CS-220

Spring 2016

Translate Virtual Address to Real Addr

addr realAddr(pid,virtAddr,req) {

pg=(virtAddr & 0xFFFFF000)>>12;
off=virtAddr & 0x0000FFF;

ptrow=findPageTable(pid,pg);
if (req is not in pageTable[ptrow].Prot) {

// segmentation violation for this pid!
}
newNRUhead(ptrow);

if (req==WRITE) pagetTable[ptrow].dirty=1;
return (pageTable[ptrow].slot<<12) || off;

}

Binghamton

University

CS-220

Spring 2016

Find Page Table Row
row=findPageTable(pid,pg) {

forEachPageTableRow(row) {

if (pid is in pageTable[row].PID) {

if (pageTable[row].page=pg) return row;

}

}

row=getSlot(pid,pg);

sRow=findSwap(pid,pg);

swapIn(pid, pg, row, srow);

return row;

}

Binghamton

University

CS-220

Spring 2016

Get a new Free Page Table Slot
row=getSlot(pid) {

forEachPageTableRow(row) {

if (pageTable[row].PID==NULL) {

pageTable[row].PID+=pid;

return row;

}

}

lru=RUtail;

RUtail=pageTable[lru].PRU;

swapOut(lru);

pageTable[lru].PID+=pid;

return lru;

}

Binghamton

University

CS-220

Spring 2016

swap a page out of real memory

void swapOut(row) {

if (pageTable[row].dirty) {

pg=pageTable[row].page;

foreach pid (pageTable[row].PID) {

srow=findSwap(pg,pid); nsrow=newSwap();

swapTable[nsrow].PID+=pid; swapTable[nsrow].page=pg;

swapTable[nsrow].free=0;

//copy from pageTable[row].slot to swapTable[nsrow].diskAddr

if (srow!=-1) swapTable[srow].free=1;

}

pageTable[row].dirty=0;

}

pageTable[row].PID=NULL;

}

Binghamton

University

CS-220

Spring 2016

Find entry in the swap space table

row=findSwap(page,pid) {

foreachSwapSpaceTableRow(row) {

if (swapTable[row].PID==pid) {

if (swapTable[row].page==page)

return row;

}

}

return -1;

}

Binghamton

University

CS-220

Spring 2016

Find Free swap space entry

row=newSwap() {

foreachSwapSpaceTableRow(row) {

if (swapTable[row].free==1)

return row;

}

// Terminate processes… out of swap space!

}

Binghamton

University

CS-220

Spring 2016

Swap a page into Real memory

swapIn(pid, pg, row, srow) {

pageTable[row].prot=READ/WRITE; // default

if (srow != -1) {

// copy data from swapTable[srow].diskAddr

// to pageTable[row].slot

pageTable[row].prot=swapTable[srow].prot

}

pageTable[row].PID=pid;

pageTable[row].pg=pg;

pageTable[row].dirty=0;

}

Binghamton

University

CS-220

Spring 2016

Insert this page in PRU/NRU list

newRUhead(row) {

if (RUhead==-1) { RUhead=row; RUtail=row; return; }

if (row==RUtail) { RUtail=pageTable[row].PRU; }

prev=pageTable[row].PRU

if (prev!=-1) {

pageTable[prev].NRU=pageTable[row].NRU

}

pageTable[RUhead].PRU=row;

Ruhead=row;

}

Binghamton

University

CS-220

Spring 2016

Process Exit
processExit(pid) {

forEachPageTableRow(row) {

if (pid is in pageTable[row].PID) {

// remove pid from pageTable[row].PID

}

}

foreachSwapSpaceTableRow(row) {

if (pid is in swapTable[row].PID {

// remove pid from swapTable[row].PID

if (swapTable[row].PID == NULL)

swapTable[row].free=1;

}

}

}

}

Binghamton

University

CS-220

Spring 2016

Fork a process

pid=fork() {

ppid=getPid(); cpid=newPid();

flushProcess(ppid); // Make sure swap is up to date

foreachSwapSpaceTableRow(row) {

if (ppid is in swapTable[row].PID)

swapTable[row].PID+=cpid;

}

// Start second instruction stream for cpid

// Second instruction stream sets cpid to zero!

return cpid;

}

Binghamton

University

CS-220

Spring 2016

Make sure all Dirty bits are off

flushProcess(pid) {

forEachPageTableRow(row) {
if (pid is in pageTable[row].PID) {

if (pageTable[row].dirty) {
oldPids=pageTable[row].PID;

swapOut(row);
pageTable[row].PID=oldPids;

}

}
}

Binghamton

University

CS-220

Spring 2016

execve
rc=execve(file,args,env) {

// open file and check ELF header return error if there is a problem

pid=getPid(); tpid=temporary pid

foreachELFsection(sec) {

addr=sectionStart(sec)

foreachPageinSection(epg) {

srow=newSwap();

pg=addr & 0xFFFFF000 <<12;

// Copy page from ELF file to swapTable[srow].diskAddr

swapTable[srow].PID=tpid; swapTable[srow].page=pg;

swapTable[srow].Prot = elf protection info; swapTable[srow].free=0;

addr+=4K;

}

}

exitProcess(pid);

// change tpid to pid in process table PID fields

// jump to start address

