Virtual Memory
Virtual Memory POV

Computer Systems Chapter 9.1 - 9.6

Binghamton CS-220

University Spring 2016

Caveat

All of what I'm teaching is ONE way virtual memory is managed.

[have “simplified” some of the processing to make things clear.

The actual implementation is more complicated.

Binghamton CS-220

University Spring 2016

Swapping Memory

Bad Idea:
Write Swap Out address space from memory to disk

Read Swap In address space from disk to memory

* A 32 bitaddress space is 4G

* Writing 4G to disk takes ~1G/sec or 4 seconds

* Times slices are MUCH smaller than 1 second

* You would spend 99.9999% of the time reading/writing memory!

Solution: Stay Tuned

Binghamton CS-220

University Spring 2016

Page Swap In
00003 2
page FEKEE Copy a page from
address space into real
memory slotn
page 0000 4
page 0000 3
page 0000 3 slot 2

page 0000 2

slot 1
page 0000 1

slot O

page 0000 0

Binghamton CS-220

University Spring 2016

Multi-Process Page Table TR sioc

6874 00003

* Keep PID in page table ==

* When processis
active, its pages get
high activity and stay
in core

* When process is
swapped out, its
pages get stale and
are more likely to get
swapped out

page FFFF F
slotn

page 0000 3

slot 2
page 0000 2

slot 1
page 0000 1

slot O

page 0000 0

Binghamton CS-220

University Spring 2016

Abstract Swap Space

* We think of SWAP space as an entire address space on disk

page FFFF m

page 0000 4
page 00003
page 0000 2

page 00001

page 0000

CS-220

Binghamton
Spring 2016

University

Leaky Abstraction: Swap Space Detalls

Vlrt Disk
* Swap space is divided into 4K pages

* And a swap space table... 8133 801CB
* Free — whether this page space E S |

is free or currently being used 0 8133 FFELA
* PID - Keeps track of which PID 1 e \

(or PIDs) currently “own” this page

* Virtual Page - Identifies where this page belongs in the
virtual address space

* Disk Addr - location of page on disk

“y @

Binghamton CS-220

University Spring 2016
Mutli-Process Memory Request 2 EEEIT
 PID 8133 requests memory at OXFFE1A03A -- 0

* PID 8133 Page FFE1A is not in the page table lessiieoics] - 1
* PAGE FAULT (PID 8133 becomes idle)

Vlrt Disk
7o

8133 801C B
0 8133 801CC
0 8133 FFE1A
1 SR (R —

slotn

slot 2

slot 1

slot O

Binghamton CS-220

University Spring 2016

Before Page Fault
PID 8133 requests memory at OxFFE1AO03A

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 801CB 2 1 >-1
8133 801CD 3 0 >1
6874 00003 4 1 ->2
6874 08013 5 0 H->3

Binghamton CS-220

University Spring 2016

Vlrt

0
0

Swap Out L PiD | Page | siot [Dirty

6874 00003 1

* Pick a victim |.- 10
* If dirty bit is on, find a free virtual page | N

* Copy page from real memory to disk
slotn

Disk

Addr
8133 801CB - - slot 2
8133 801CC

8133 FFE1A slot1

e

1

slot O

Binghamton CS-220

University Spring 2016

.Swap Out _PID_|_Page _ Slot | Dirty_

6874 00003 1

» Update New Row of Swap Space Table |_- 10
* Free old Row of Swap Space Table B -

* Remove Page Table Entry

Vlrt Disk

slotn

slot 2

81433 861CB
0 8133 801CC
0 8133 FFE1A

d 8133 80ICB o

—— slot 1

slot O

Binghamton CS-220

University Spring 2016

Swap In (to real memory slot) “EHEEEEEIEET
* Find PID /virtual page in SWAP space table -- 0

* Copy page from disk address to real memory [ISISS[FRETAY > O
* Update page table

slotn

J

slot 2

0 8133 801CC

slot 1

0 8133 FFE1A - ..

0 8133 801CB \\‘-

slot O

Binghamton CS-220

University Spring 2016

After Page Fault
PID 8133 requests memory at OxFFE1AO03A

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 H->5
8133 801CD 3 0 >1
6874 00003 4 1 ->-1
6874 08013 5 0 >3

Binghamton CS-220

University Spring 2016

Exit Revisited

* When a process exits, dirty bitis turned off for all pages in the
page table that belong to that process

 All pages in swap space table associated with this PID are marked
as “free”

* No other action is performed
* The processes pages will eventually get stale and swapped out
* Dirty bit will never get turned on again because the processis gone.

 When pages are swapped out, no attempt to write them back to swap
space because the dirty bit is off.

Binghamton CS-220

University Spring 2016
Before EXxit
PID 6874 about to exit

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 H->5
8133 801CD 3 0 >1
6874 00003 4 1 ->-1
6874 08013 5 0 >3

)

Binghamton CS-220

University Spring 2016
After Exit
PID 6874 exited

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 H->5
8133 801CD 3 0 >1
6874 00003 4 0 ->-1
6874 08013 5 0 >3

)

Binghamton CS-220

University Spring 2016

fork revisited
* Add child PID to parent PID in swap space table entries for parent

* When child first accesses memory...
* Generates page fault... no child process pages in real memory yet.
* Page swapped in from parent child shared swap space to real memory
* Page table identifies real page as belonging to child

* When parent process dirty page is swapped out...
* New swap space is created for that page with only the parent PID
* Parent PID removed from parent/child shared swap page

* When child process dirty page is swapped out
* New swap space is created for that page with only the child PID
 Child PID removed from parent/child shared swap page

Binghamton CS-220

University Spring 2016

Multiple PIDs in Swap Space Table Row

* Most of the time, a page in the swap space table is only associated
with a single PID

* When a “fork” occurs, parent and child have exactly the same
memory... no need for two copies in swap space... just add child
PID to the parents page

* When a page with multiple PIDs is swapped in, it is swapped in by
one of those PIDs. In the page table, the page in real memory is
owned by a single PID

* If both child and parent access the same page, two pages are in
real memory, one for each process

Binghamton CS-220

University Spring 2016

Multiple PIDs in Swap Space Table Row

* When swap-out occurs, memory has changed for the PID that
owns the page in real memory

* The page is copied to a NEW swap space page, associated with a
single PID... the PID that owned the real page memory

* The PID is removed from the list of PIDs in the old swap space
table row for this page

* If, when you removed the PID, there are no PIDs left in the old
swap space table row for this page, mark this page as free

Binghamton CS-220

University Spring 2016

Implementation Detall

* For my description of “fork” to work, swap space must match real
memory

* Therefore, before adding child PIDs to the parent PID in swap
space table, need to copy every page in page table for parent
process with Dirty bit on back to swap space.

Binghamton CS-220

University Spring 2016

Before Fork
PID 8133 about to fork

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 1 H->5
8133 801CD 3 0 >1
6874 00003 4 0 ->-1
6874 08013 5 0 >3

)

Binghamton CS-220

University Spring 2016
Before Fork
PID 8133 forking... update swap space

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 H>5
8133 801CD 3 0 >1
6874 00003 4 0 ->-1
6874 08013 5 0 >3

)

Binghamton CS-220

University Spring 2016

Fork — Child PID=8134
PID 8133 forking... add child pid in swap table

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 H->5
8133 801CD 3 0 >1
6874 00003 4 0 ->-1
6874 08013 5 0 >3

Binghamton CS-220

University Spring 2016

After Fork / after child page fault

Child PID 8134 requests instruction after fork...

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
5934 08013
8133 801CC 1 0 >0
8133 FFE1A 2 0 ->5
8133 801CD 3 0 >1
8134 801CB 4 0 H->2
6874 08013 5 0 >3

Binghamton CS-220

University Spring 2016

After Fork / before parent page swap out
PID 9432 requests instruction at 0x801C A010

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
8134 801CC H->5
8133 801CC 1 0 >3
8133 FFE1A 2 1 >-1
8133 801CD 3 0 >4
8134 801CB 4 0 ->2
8134 FFE1A 5 1 >1

Binghamton CS-220

University Spring 2016

After Fork / after parent page swap out
PID 9432 requests instruction at 0x801C A010

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
8134 801CC
8133 801CC 1 0 >3
9432 801CA 2 0 H->0
8133 801CD 3 0 >4
8134 801CB 4 0 >-1
8134 FFE1A 5 1 >1

Binghamton CS-220

University Spring 2016

After Fork / before child page swap out
PID 9432 requests instruction at 0x801C B0O0O

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
8134 801CC
8133 801CC 1 0 H->2
9432 801CA 2 0 >0
8133 801CD 3 0 ->5
8134 801CB 4 0 >3
8134 FFE1A 5 1 >-1

Binghamton CS-220

University Spring 2016

After Fork / after child page swap out
PID 9432 requests instruction at 0x801C B0O0O

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
8134 801CC
8133 801CC 1 0 ->2
9432 801CA 2 0 >0
8133 801CD 3 0 ->-1
8134 801CB 4 0 >3
9432 801CB 5 0 H->1

Binghamton CS-220

University Spring 2016

execve / Load revisited

* Assuming execve is able to find the ELF executable...
 All old entries in the swap space table for this PID marked as free

* Each initialized section of the ELF file is copied to new SWAP
page(s) marked with this PID

* Every current entry in Page Table with this PID has PID changed to
zero and dirty bit turned off

* Dirty bit cannot be turned on again...no PID 0
* Pages will get stale and eventually swapped out

* When first memory fetch is performed, it causes a page fault
* Loads swap space into real memory and updates page table

Binghamton CS-220

University Spring 2016

Before child execve
Child PID 8134 about to invoke execve

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
8134 801CC H->5
8133 801CC 1 0 >3
8133 FFE1A 2 1 >-1
8133 801CD 3 0 >4
8134 801CB 4 0 ->2
8134 FFE1A 5 1 >1

Binghamton CS-220

University Spring 2016

After child execve
Child PID 8134 after execve

Swap Space Table Page Table

Free PID(s) PagelD Disk@ m
0000 801CC
8133 801CC 1 0 >3
8133 FFE1A 2 1 >-1
8133 801CD 3 0 >4
0000 801CB 4 0 H->0
0000 FFE1A 5 0 >1

)

Binghamton CS-220

University Spring 2016

Uninitialized Pages

* No data in SWAP required for uninitialized pages of memory

* On first memory access in this page
* If page not found in swap space table, assume it is uninitialized
« MMU assigns swapped out page slot to new PID /page
 Saves disk read for uninitialized memory

* When page is swapped out, if dirty...
* New swap space page is created for this page (as before)
* If there is an old page in SWAP for this memory, it is marked as free
* If there is no old page in SWAP, it must have been uninitialized memory

Binghamton CS-220

University Spring 2016

Shared Memory

* Typically restricted to read-only memory
* Used for standard library functions

* Page Table Entry can be associated with multiple PIDs
* Multiple processes can share a single page in real memory!

e Saves time

* Shared pages have high hit rate because they are accessed by multiple
processes

» Shared pages often already in real memory

* Saves real memory
* if not shared, each process would have its own copy of that page

Binghamton CS-220

University Spring 2016

Shared Memory Problem

* Shared memory must use the same virtual pages for all processes

* Either we must come to global agreement on where “printf”
resides (which is REALLY hard) or...

* We must come up with an indirection methodology
 standard libraries are relocatable — not address specific
* The first process to call printf (since IPL) “loads” the shared library

* Somewhere, there is a table that says printf has been loaded at shared
virtual address 0x080C 0150 (for instance)

 When you call printf, you call a non-shared / non-relocatable printf which
looks up where printf really is (the first time) and re-directs there

Binghamton CS-220

University Spring 2016

Inter-Process Communication

e Sometime programmers use shared memory for inter-process
communication

* Shared page may be written to by multiple processes
 INHERENTLY DANGEROUS!

* Use “ipc” (inter-process communication) utilities instead
 contains semaphores and message passing protocols

Binghamton CS-220

University Spring 2016

Memory Mapping

ptr= mmap(NULL,length,PROT_READ,MAP_PRIVATE,fd,0);

* Logically... puts file contents of “fd” into memory and returns a
pointer to the start of the file contents

* In fact, divides the file into page sized chunks, and adds those
chunks to the swap space table!

» Allows writes as well as reads ... dirty bit
* On “munmap’, swaps out all dirty pages

Binghamton CS-220

University Spring 2016

Memory Map A
int fd=fopen(“test.txt”,RWONLY); v

char *data=mmap(NULL,12288,PROT_WRITE,MAP_PRIVATE,fd,0); /-
da

// data=0x0F06 3000 E(iifil:

8133 801CC
8133 FFE1A

0
0
-1 8133 O0F063
-1
-1

8133 0F06 4 s
8133 OF06 5 \

Binghamton CS-220

University Spring 2016

Virtual Memory Is not Cache

* Cache uses some of the same concepts as virtual memory
* Cache is Fast/ Expensive RAM

slotn .1 Cache

slot 1

slot 0

Binghamton CS-220

University Spring 2016

Backup (not presented)

Algorithms for Memory Management

Binghamton CS-220

University Spring 2016

Contents

* Page Table Definition

* Swap Space Table Definition

realAddr

« findPageTable

« getSlot
« swapOut
« findSwap
* newSwap
« swapln

« newRUhead
exit
fork

e flushProcess
execve

Binghamton CS-220

University Spring 2016

Page Table Definition I TSI
0 0 0 - -1 -1

0
* Columns o 0 1 - 0o -1 -1
* PID - list of process IDs for this page 0 0 0 -1 -1
* Page - Page ID (first 5 hex chars of addr)
* Slot - Index of page slot
* Prot - Protection bits for this page... Read/Write/Execute
* Dirty - Whether this page differs from Swap space version
* PRU - Index of previous recently used page
* NRU - Index of next recently used page

e Initial Values

* PID=0, Page=0, Slot=0,1,2, up to number of slots in real memory
Prot=None, Dirty=0, PRU=-1, NRU = -1

e Also: RUhead=-1 RUtail=-1

Binghamton CS-220

University Spring 2016

Swap Space Table Definition m

01000

* Columns 1 - 0 - 02000
* Free - 1 if available, ~1 otherwise 1 - 0

* PID - List of Processes associated with this page in swap
* Page - Page ID (first 5 hex chars of addr)

* Prot - Page protection: RWX

* Disk Addr - Location of page on Swap disk

* Initial values
* Free - 1, PID - Null, Prot - NULL, Page - 0
* Disk Addr - all swap page slots available in swap space

Binghamton CS-220

University Spring 2016

Translate Virtual Address to Real Addr

addr realAddr(pid,virtAddr,req) {
pg=(virtAddr & OXFFFFFO00)>>12;
off=virtAddr & OxO00OFFF;
ptrow=findPageTable(pid,pg);
if (req is not in pageTable[ptrow].Prot) {
/| segmentation violation for this pid!

}
newNRUhead(ptrow);

if (req==WRITE) pagetTable[ptrow].dirty=1;
return (pageTable[ptrow].slot<<12) || off;

Binghamton CS-220

University Spring 2016

Find Page Table Row

row=findPageTable(pid,pg) {
forEachPageTableRow(row) {
if (pid is in pageTable[row].PID) {
if (pageTable[row].page=pg) return row;

}
}
row=getSlot(pid,pg);
sRow=findSwap(pid,pg);
swapln(pid, pg, row, srow);
return row;

Binghamton CS-220

University Spring 2016

Get a new Free Page Table Slot

row=getSlot(pid) {
forEachPageTableRow(row) {
if (pageTable[row].PID==NULL) {
pageTable[row].PID+=pid;
return row;
}
}
lru=RUtail;
RUtail=pageTable[lru].PRU;
swapOut(lru);
pageTable[lru].PID+=pid;
return lru;

Binghamton CS-220

University Spring 2016

swap a page out of real memory

void swapOut(row) {
if (pageTable[row].dirty) {

pg=pageTable[row].page;

foreach pid (pageTable[row].PID) {
srow=findSwap(pg,pid); nsrow=newSwap();
swapTable[nsrow].PID+=pid; swapTable[nsrow].page=pg;
swapTable[nsrow].free=0;
/ /copy from pageTable[row].slot to swapTable[nsrow].diskAddr
if (srow!=-1) swapTable[srow].free=1;

}

pageTable[row].dirty=0;

}
pageTable[row].PID=NULL;

Binghamton CS-220

University Spring 2016

Find entry in the swap space table

row=findSwap(page,pid) {
foreachSwapSpaceTableRow(row) {
if (swapTable[row].PID==pid) {
if (swapTable[row].page==page)
return row;
§
§

return -1

Binghamton CS-220

University Spring 2016

FInd Free swap space entry

row=newSwap() {
foreachSwapSpaceTableRow(row) {
if (swapTable[row].free==1)
return row;

5

// Terminate processes... out of swap space!

Binghamton CS-220

University Spring 2016

Swap a page into Real memory

swapln(pid, pg, row, srow) {
pageTable[row].prot=READ/WRITE; // default

if (srow !=-1) {
/] copy data from swapTable[srow].diskAddr
// to pageTable[row].slot

pageTable[row].prot=swapTable[srow].prot
}
pageTable[row].PID=pid;
pageTable[row].pg=pg;
pageTable[row].dirty=0;

Binghamton CS-220

University Spring 2016

Insert this page in PRU/NRU list

newRUhead(row) {

if RUhead==-1) { RUhead=row; RUtail=row; return; }

if (row==RUtail) { RUtail=pageTable[row].PRU; }

prev=pageTable[row].PRU

if (previ=-1) {
pageTable[prev].NRU=pageTable[row].NRU

}

pageTable[RUhead].PRU=row;

Ruhead=row;

Binghamton CS-220

University Spring 2016

Process Exit

processExit(pid) {
forEachPageTableRow(row) {
if (pid is in pageTable[row].PID) {
/] remove pid from pageTable[row].PID
}
}

foreachSwapSpaceTableRow(row) {
if (pid is in swapTable[row].PID {
/| remove pid from swapTable[row].PID
if (swapTable[row].PID == NULL)
swapTable[row].free=1;

}

Binghamton CS-220

Spring 2016

University

Fork a process

pid=fork() {
ppid=getPid(); cpid=newPid();
flushProcess(ppid); // Make sure swap is up to date
foreachSwapSpaceTableRow(row) {
if (ppid is in swapTable[row].PID)
swapTable[row].PID+=cpid;
}
/] Start second instruction stream for cpid

/| Second instruction stream sets cpid to zero!
return cpid;

Binghamton CS-220

University Spring 2016

Make sure all Dirty bits are off

flushProcess(pid) {
forEachPageTableRow(row) {
if (pid is in pageTable[row].PID) {
if (pageTable[row].dirty) {
oldPids=pageTable[row].PID;
swapOut(row);
pageTable[row].PID=oldPids;

Binghamton CS-220

University Spring 2016

execve

rc=execve(file,args,env) {
/| open file and check ELF header return error if there is a problem
pid=getPid(); tpid=temporary pid
foreachELFsection(sec) {
addr=sectionStart(sec)
foreachPageinSection(epg) {
srow=newSwap();
pg=addr & OXFFFFFO00 <<12;
/] Copy page from ELF file to swapTable[srow].diskAddr
swapTable[srow].PID=tpid; swapTable[srow].page=pg;
swapTable[srow].Prot = elf protection info; swapTable[srow].free=0;
addr+=4K;

}

exitProcess(pid);
// change tpid to pid in process table PID fields
// jump to start address

